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Glassy behavior in an exactly solved spin system with a ferromagnetic transition
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We show that applying simple dynamical rules to Baxter’s eight-vertex model leads to a system which
resembles a glass-forming liquid. There are analogies with liquid, supercooled liquid, glassy, and crystalline
states. The disordered phases exhibit strong dynamical heterogeneity at low temperatures, which may be
described in terms of an emergent mobility field. Their dynamics are well described by a simple model with
trivial thermodynamics, but an emergent kinetic constraint. We show thgséwend ordgrthermodynamic
transition to the ordered phase may be interpreted in terms of confinement of the excitations in the mobility
field. We also describe the aging of disordered states toward the ordered phase, in terms of simple rate

equations.
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INTRODUCTION At temperatures lower than the glassy onset temperdiyre

&[3,18], the dynamics are strongly heterogeneous, and slow
down rapidly with decreasing temperature.

In this paper, we address the other issue mentioned above:
w are dynamics of metastable supercooled states affected

driven by the idea that the dynamical properties of glasdy the presence of the freezing transition? We study dynam-

formers may be characterized by a zero temperature dynam'fgsI in dﬂ;ge eight-vertex E‘Odel' dwlhose tgermodygamics were
cal fixed point[2]. This is in contrast to the predictions of SCIved by Baxtef19]. The model may be treated as a gen-

other theories which involve a finite temperature singularityer"’lllzatlon of the square plaquette mofli5,17; the effect

) ; ) of this generalization is to introduce(aecond orderphase
;r;;f;ee&ygla%mcsm,ﬂ or the thermodynamics of the relevant transition to an ordered state at a finite temperafiyéNe

. . i . identify this with a freezing transition, and investigate the
However, there remains an important qualitative differ- fy g g

b hvsical alass f dth gel hdénamics around this transition. The transition temperature
ence between physical glass formers and the models, such 5,5y pe varied with respect to the glassy onset temperature

the Fredrickson-AndersefrA) [9] or East[10] models(see T This fact, together with the exactly solved thermodynam-
Ref. [11] for a review studied in Refs[1-3]: the crystal ics gives an extra degree of control to our simulations.
phase is completely absent from these models. As a result, we will show that we may prepare long-lived “super-
they are relevant if the glass-forming liquid is in a long-lived cooled” states below,, whose dynamics are controlled by
(but metastablesupercooled phase. Further, interplay be-the effective dynamical constraint of the plaquette model,
tween the thermodynamic singularity associated with theand are not affected by the freezing transition for times
transition to the crystal and the dynamical fixed point assoshorter than the lifetime of the supercooled state.
ciated with the glass is certainly possible, but the FA and To be more precise, the dynamics of the system within the
East models cannot capture these phenomena since thsupercooled state resemble those of strong glasses, and arise
thermodynamics are trivial. There has been recent worltrom diffusing pointlike excitations in a mobility fielpfl—3].
[12,13 (see also Ref[14]) investigating these issues with Considering supercooled states at different temperatures, we
regard to glassy systems, although without reference to find that they obey dynamical scaling consistent with a zero-
glassy fixed point at zero temperature. temperature fixed point. The presence of the ferromagnetic
The extent to which the FA and East models can bedransition means that these states have a finite lifetime, but it
viewed as pictures of real glasses is therefore contingent odoes not affect the dynamics on time scales shorter than this
two main assumptions. First, the behavior of the supercooletifetime. This is consistent with the assumptions made when
state should not be affected by the proximity of the freezingnodeling glass formers using models without an ordering
transition, since the FA and East models regard glassy slowransition[1-3].
ing down as a purely dynamical effect, not requiring a ther- The form of the paper is as follows. In Sec. |, we describe
modynamic transition. Second, the “mobility field” repre- the model, identify relevant energy scales and their hierar-
sented by the spins in these models should emerge naturalthy, and discuss the relation between the spins of our model
from atomistic degrees of freedom of the glass former. and the atomistic degrees of freedom of a physical glass
One class of models in which this latter effect is demon-former. We discuss the nature of the ordered and disordered
strated are the two-dimensional plaquette mofiets-17, in phases of the model system in Sec. Il: we then use this in-
which an effective dynamical constraint emerges naturallyfformation to interpret simulations of the dynamics of the
from a simple spin model. There are free excitations in thenodel in Sec. lll. Finally, we summarize our results and
spin field which are naturally interpreted as a mobility field. discuss their significance for models of the glass transition.

Despite many years of study of glass-forming liquids, th
most suitable paradigm in which to discuss the “glass tran
sition” and its associated dynamical phenomena remainﬁ
controversial. In recent years, there has been progjless, 0
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I. THE MODEL tem. The spin variables represent the microscopic degrees of

, . freedom of the glass former. This is distinct from the more
ma;ht?ezeirgr(felsei delegimevrﬁgigrnn:gi?Iit:cc))l\r/iz(ijnglyvsgi)fgsg]or aheurlstllc approach taken in the FA _and East m.ode!s in which
an Ising model with Hamiltonian ' the spins re'present a cparse—gramed “mobility f|eld.." The

SEV model is more similar to the plaquette mo@&¥] in
that the effective kinetic constraint responsible for the critical
slowing down at zero temperature is not inserted explicitly,
(1) but arises from the combination of the Hamiltonian and

simple spin-flip dynamics. In Sec. Ill we will comment
where the{o;} are Ising spins on a square lattice. We notebriefly on how the dynamics may be interpreted within a
that the Ising coupling is betweerext nearesheighbors on  “mobility field” picture like that of the FA model.
the square lattice: @ =0 there are two independent sublat- In the previous section we identified the two temperature
tices, with Ising coupling) within each sublattice. There is a scales in the model as the glassy onset temperdieD
transition atJ=(T/2)sinh’(1) to a fourfold degenerate or- and the transition temperatuf& <T,. These separate the
dered statdthere are two ferromagnetic and two antiferro- behavior of the system into three regimes. We argue that the
magnetic ground states, related by flipping all the spins ofligh temperature phase of the SEV model with (T,, T,)
either sublattice As D is increased from zero, the lattices resembles a liquidlike state of the atomistic system, since it
become coupled, and the transition moves to a higher teracks any two-point correlations between the spins.

H=>[- D0y 014107 j+10i+1,j+1 = I(05jTir1 41 + Oi41 05 j+1)]
ij

perature: the critical temperatuTe satisfies The second regime i§.<T<T,: there are still no static
_ correlations between the spins but there are stoymgmical
sinh(2J/T) = exp(— 2D/T). (2)  correlations. This state resembles a viscous liquid whose re-

The transition to an ordered state occurs for all fiditave  |2Xation time is large compared to microscopic time scales.
also note that iD>J then the transition temperature will be V& €émphasize that the crossover between this regime and the

much larger thar. high temperature behavior is smooth: there is no sharp tran-

Thus far we have considered only staficermodynamig sition atT,. In the viscous liquid, the atomistic degrees of
properties of the eight-vertex model. In order to study thel’®@dom are ‘jammed” over large regions of the system: re-

time evolution of this model, we must specify dynamical laxation in t_hese regions is_ frustratec_i by large energy barri-
rules. We use simple spin flips with rates given by Glaube®'s- Dynamical he_teroge_nelty then arises naturally, dL!e to the
dynamics. We refer to the combination of the HamiltonianPreSénce of mobile regions where the energy barriers are

and the dynamical rules as the spin-flip eight-vertS8EV) smaller. than average. There are very many paramagnetic
model. states in the spin system, even at low temperaticesm-

If we setJ=0 in the SEV model, we arrive at tHewo- pared toD): these resemble the many possible jammed states
dimensional plaquette modef15,20,21. In this limit there  ©f the glass former. _
is no ordering at any finite temperature: all two-point static, Having argued that the paramagnetic phase of our model
correlations vanish. This may be most easily demonstratelf /9uidlike, and shows glassy behavior at low temperatures,
by noting that ifJ=0 then the Hamiltonian is invariant under 't iS natural to interpret the transition in the model as a freez-
flipping all of the spins in any row or column of the square "9 transition. We identify the ferromagnetic phase with the_
lattice. The dynamics of this model are dominated by a zerotrystalline states of the glass former. As.the temperature is
temperature dynamical fixed point for temperatufeshat  lowered throughT, the entropy falls rapidly as the very
are small compared . Since we are studying slow dynam- Many paramagnetigammed states are now thermodynami-
ics we work throughout &t < D. cally unstable with respect to the ferromagnet. The effect of

We have now identified two temperature scales in thdN® dynamical fixed point on the transition between paramag-
problem: the onset of glassy dynamics occurd afl,~ D net and ferromagnet is the main subject of the following
and the critical point in the system is B T,. If T,>T,then  Sections. In particular we show that “supercooling” of the
we expect the slow dynamics to be observable only in thd@ramagnetic state is possible as longrasD.
ordered phase: the more interesting casg,is T, in which

case the dynamics are slow near the transition, and we may || STATIC PROPERTIES OF THE SEV MODEL
investigate the effect of the effective kinetic constraint as we _ _ .
cool the system througfi.. We therefore work aff,<D: We now discuss the microscopic structure of the ferro-

from Eq.(2), this means thal<T.. As a result we have the magnetic and paramagnetic states in the model of(Eqg.

hierarchyJ < (T,T,) <D which is obeyed throughout this pa- This will allow us to identify the relevant correlation func-
per. tions for our study of the dynamics of the system. We de-

scribe the paramagnetic state in terms of small deviations
from the behavior of the model with=0, and the ferromag-
netic state in terms of excitations in an ordered background.
Before investigating the SEV model more closely, we es-This will lead us to interpret the transition in terms of free
tablish the relationship between this model and physicatlefects aboveT, that become confined at the transition,
glass formers: it is not obvious at first sight precisely how aforming composite excitations. We will also show that these
model of Ising spins should be related to an atomistic sysedescriptions are valid even rather close to the transition, de-

Relation of this work to physical glass formers
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(right) T.. Some of the excited plaquettes are identified by arrows.

FIG. 1. Sketch showing the relation between spin states, exciteqlhey are “free” abovd,, but “confined” on corners of rectangular
plaquettes, and domain walls. Udown) spins are represented by oy itations in the ferromagnetic phase.
filled (empty circles. Domain walls form closed loops with excited
plaquettes(energy cost P) at each isolated corndthere is no
energy cost associated with wall crossings domain wall costs fou=—TIn[e®T cost2J/T) +eP']. ©)
energy J per unit length when running through a ferromagnetically
ordered region. Interactions between domain walls reduce this terSince we work exclusively at<T, Eq. (5) is rather close to
sion in disordered states. the J=0 expressior{4).

We focus on two correlation functions, the density of ex-

spite being based on expansions around the fully ordered &'t€d plaquettes, and the density of broken Ising bondg
fully disordered states. In other words, the critical region is! Neir definitions are
very narrow. .
We begin by recalling some results for tlde0 limit — 21
of the gmodgl [20 211g At J=0, we write p M= 2(1 (01101 410141 %1s1+0) )
3 . ] I
=0ij 0 j+10i+10i+1+1, and the Hamiltonian reduces to

1
Hymo= - DE o, 3) n, = Z(Z —(0ijTis1j+1 ¥+ 014100 j+1)).- (7)
I In the representation of Fig. 1, the concentration of verti-
o ) ces is given byn,. The parameten, is related to the total
where thep; are Ising-like degrees of freedom, defined on theperimeter of the closed loops of that figure, and measures the
plaquettes of the square lattice. In the thermodynamic |'m'FsEatial ordering of the vertices. The free plaquettes observed
these plaquettes are independent degrees of freedom, whigfj=0 haven,=(1/2). As n, is reduced, the reduction in the
define the state of the spin system, up to transformations thadop perimeter starts to constrain the positions of the verti-

flip all the spins in any row or columfieaving H;-, invari- ces, and spatial correlations appear.
an. We observe that this results in a ground state entropy The internal energy per site is given by

proportional to the linear size of the systein(there areN

=L2 sp_in; in the systein N (H/N) = 2Dn, + 4Jn, = (D + 2J) (8)
In finite systems, the presence of boundary conditions

may impose constraints on the plaquettes. For example, imsg e haven,=(1+df/dD)/2 andn,=(2+4f/4J)/4. Using

posing periodic boundaries on the spins means that the NUNEq, (5), the paramagnetic state has

ber of excited plaguettes in all rows and columns must be

even (we believe that this fact led to the strong finite size ~ 1 420 -1

effects seen in Ref21]). np =1+ cost2Im]™, ©
As discussed in Ref21], the low temperature states of

the model withJ=0 are best interpreted in terms of closed sinh(2J/T)

loops with excited plaquettes at each vertege Fig. L If My = (1/2) - cosh2J/T) +e @™

we move across the lattice, any spin flip is accompanied by

our crossing the perimeter of a loop. J#=0 then each \ye see that introducing leads to small negative corrections
plaquette is independent: the vertices of the loops are a freg the J=0 values ofn, and n,. However, forT<D, the
lattice gas with density1 +eP)™%. The free energy per site concentration of excited plaquettes is still approximately
is simply =T and these plaquettes are only weakly interacting
sincen,=(1/2). A typical configuration is shown in Fig. 2:
- there are no two-point correlations between the spins, but the
fa=0= = TIn[2 costD/T)]. @ loop vertices arepdilute sincB<D. P
At finite J, we make use of Baxter’s solution of the eight- We now consider the system at temperatures lower than
vertex model[19]. In the Appendix, we show that the free T.. As shown in the Appendix, a good approximation to the
energy per site fol > T, is given approximately by free energy per site in the ferromagnetic phase is

(10
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© Te 80T dered spin field, in which the excited plaquettes are free.
fem=-D-2)- 16 SINR2IT) (1) Away from the critical regior(which is narrow, the excited

plaguettes are nearly free in the paramagnetic phase: in the

which is valid forJ<T<T.<D. In this regime ferromagnetic phase they are confined on corners of rectan-

e 8DIT _gular loops whose typical size is much smaller than their

b= Ty (12)  inverse density. _

4 sinif(2J/T) So far, our microscopic arguments have been purely ther-

- modynamic: we have not considered any dynamics. In the

Ny = € . (13) next section, we investigate the dynamics of the SEV model.

16 sintf(2J/T)tanH2J/T)
For excitations in a ferromagnetic backgroumg,is di- . DYNAMICS

rectly related to the perimeter of the closed loops shown in
Fig. 1. Equationg12) and(13) are therefore consistent with
rectangular excitation loops with an excited plaquette at eac
corner (total energy cost B). The expectation of the loop
perimeter is approximatelyt/2J). This is much smaller than
the typical spacing between loops, given t83/T)e*®'T.
This situation is sketched in Fig. 2.

The density of loops is given by the number of ways
of forming such a loop, multiplied by a Boltzmann
factor e ®P'T. We therefore identify the entropy per loop as
Soop™ 2 IN[4 sinh(2J/T)]. The apparent divergence of the
perimeter(and therefore the entropyt smallJ represents
the breakdown of the ordered state which happefs.dathe

This section contains the key results of this paper. We
Rriefly describe the dynamics of the paramagnetic state,
which are essentially independent bfWe then discuss the
onset of ordering as the temperature is lowered throQigh
We will find that supercooled states exist n@arwhich are
well described by a simple “mobility field” picture for times
shorter than their lifetime. We then discuss the extent to
which these states can be regarded as metastable, and what
determines their lifetimes.

We begin with a very brief review of the dynamics in the
paramagnetic state with<T,. SinceJ may be treated per-
turbatively in this regime, we write the Hamiltonian as in Eq.
(3). Flipping a single spin involves flipping of the four

. . , Blaquette variables adjacent to that spin. Thus spins adjacent
cost for adding two vertices to the lo¢gD) is balanced by, tour unexcited plaquettes have a flipping rate that is sup-

the entropy gain associatgd with adding_ an extra rec_tanguleHressed by a factoe®®T. However, the flip rate of spins
segment to the loop. This entropy gain is approximately,giacent to exactly one excited plaguette are suppressed only
Soopr We may therefore obtain an estimate of the transmorby a factore™®'T. The excited plaguettes mark mobile re-
temperature by settingl¥/ T.=S,p- The result is gions in which spin flips are rather likely. Thus the model

4 sinh(2J/T,) = exp(- 2D/T,), (14) resgmll[alis kinetically constrained systems such as the FA

model[9].

which differs from the exact resu(2) only by the constant The relaxation time of the spins depends on the tempera-
leading factor of 4. The real transition temperature is lowefkyre and on the density of excited plaguettes, according to
than that predicted by this method because interactions be-_ y-14D/T This arises from localized one-dimensional dif-
tween the loops act to reduce the energies at large perimetefgsion of pairs of excited plaquett¢0,21]. In equilibrium,

Thus we interpret the transition to the paramagnet as deye haven,=c=e2°'T, so the relaxation time diverges as
confinement of localized composite excitations. The state bes3 pore Brecisely, we have the scaling relati@@]
comes disordered when the loop size becomes comparable
with the spacing between loops. (03 (t) i (t + 1) g eq= F(C31) (16)

The magnetization and correlation lengths may also b
calculated in similar serietsee the Appendjx The magne-
tization My may be used to calculate the fraction of spins
opposed to the mean spin,

for the on-site autocorrelation function in equilibrium at a
given value ofc. This is strong glass behavior in the classi-
fication of Angell[22].
We now turn to results for the SEV model beloty,
_1-Mg Tl where J may not be treated perturbatively. We discuss the
M= T 556 sinfIT)” (15 phenomenological similarities and differences between this
model and physical glass formers. We then interpret this be-

Assuming that the lowest lying excitations are rectangulahavior with the aid of mean field rate equations.
domains with four excited plaquettes per domain, we expect

a relation of the forrmS:(np/4)(nb/np)2. We see that this is
true for smallJ/T [recall that(J/T) is a small number, al-
though expansions abodt0 are not valid in general since We start this section by demonstrating how a supercooled
we are in an ordered phase state may be formed beloil.. We investigate the dynamics
Thus we have arrived at the following picture of the ther-of the system by means of simulations which use a continu-
modynamics of the SEV model. There is a density of excitecbus time Monte Carlo algorithii23], with periodic bound-
plaquettes,, which sit on the corners of overlapping closed ary conditions. The number of excited plaquettes in each row
loops. The total loop perimeter is measured in terms of thend column is constrained to be even in this treatment, so the
parametemy: the pointn,=(1/2) is the maximally disor- linear size of the system must be greater tfann,) for

A. Existence of supercooled states
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FIG. 3. Behavior of the system after two quenches from infinite FIG. 4. Behavior of the SEV model after a quench frdip

temperature to just below and just abolg=0.49. The two pla-  _ — . - .
teaux correspond to the onset of activated dynamics, and equilibra‘-l'ozrC 10 T5=0.996T with Tc=0.45. We show concentrations of

tion in the disorderedglassy state. However, the disordered state is EXCI_t?Zg/I%qZuettemp, and broken bondsy,. The dotted lines mark
unstable belowT,, as is clear at longer times. 1,27 -

th changes im,, the other with changes in,.

Turning to the supercooled state itself, it is clear from Fig.

that it hasn,=c=e?'T and n,=(1/2). This resembles
closely the state that would be formed if we Set0 in the

u=(H/N)+D +2J. (17 Hamiltonian. Thus the effect of the interactions between

N . .plaquettegthe term proportional td in the Hamiltonian is

The dashed trace in Fig. 3 shows the internal energy densi set the lifetime of the supercooled state. The properties of

after que_nc_hlng ©a temperatuig such that.TC<Tl<D' the state itself are independent &f We conclude that the
After an initial transient, the system ages in a_power IaWsu ercooled state in the SEV model can be well described b
fashion toward equilibration ai~2De?'T1+2]. The pla- b y

teau at(u/D)=0.2 is a characteristic feature of models with ;Pfstr::;:gg r?wlg]drgle\r/vﬂ\a?r?v?;tlethn;(r)r?]ibO;aEﬁ)é ar(l)(lr:aer:ilgz"%'his
kinetic constraintgswhether explici{9] or emergenf16,24)). y prop :

It represents the onset of “activated” dvnamics. The e .l._is the assumption made when describing glass formers by
Prese v y 1CS- quit simple models of dynamical heterogendity3]: in the SEV
bration time for the paramagnet scales as a powec of

oo . model, this assumption seems to be reasonable.
[_15 17_|' All these features are seen in the model with0 A key property of supercooled states is that two-time cor-

In contrast, the full trace in Fig. 3 shows the behavior Onrelatlon functions should be stationary within the super-

quenching to a temperatur, satisfying T,<T.<D, but cooled state. That is, expectation values of the form
2 c ' i
with T, close toT.. The behavior resembles that of the (AltwA(t+1,)) should be independent d, as long as(t

quench to T, including apparent equilibration ati +t,,) is less than the lifetime of the states. In Fi{§), we

~2De ®M2+2]. However, this state is not stable, and theshow that the s.upercooled §tate withec andn,=(1/2) has .
energy falls further at longer times. This behavior resemblediS Property. Since the excited plaquettes are uncorrelated in
that of glass formers, where the state on the lower plateal!iS Stéte, it may be prepared manually, without the need for

would be called a supercooled liquid. The behavior is alscoimulation. Further, the single-spin autocorrelation function
qualitatively similar to that observed in RéL2]. in the supercooled state is the same as that in the model with

In order to focus on the supercooled states, we show furd=0 @t the same temperature. It therefore obeys the dynami-

ther simulations in Fig. 4. The system is cooled throdgim  ¢@! scaling law of Eq(16), and is independent .~

a single small step. We plat, andn, as functions of time. As a final comment on Fig. 5, we note that the criterion

From the plot ofn, we see that the density of free excita- that the supercooled state should be long lived is satisfied,
p!

tions responds relatively quickly to the change in temperaSINCce stationarity holds over time scales much longer than
-2/ 10 c,=e /T2, where it appears the single-spin relaxation time. Thus the data in that figure

ture: it falls fromc, =€ - i .
to stabilize. are consistent with the picture of a supercooled state that

The response af, to the cooling is much slower. Recall PPears to equilibrate in a metastable basin.
that this correlation function measures the clustering of ex-
cited plaquettes. This clustering is a much slower process
than the creation and annihilation steps leading to a change
in the concentration of excitations. Looking at the late times Having identified a supercooled state at temperatures near
in Fig. 4 when the clustering does start to occur, the systenic, we now proceed to discuss its lifetime. We prepared
ages towards the ferromagnetic state with boghand n,  States withn,=c andn,=(1/2) and measured the time taken
falling together. Taking the two traces in Fig. 4 together, wefor n, to fall to 0.45. Results are shown in Fig. 6. The life-
see that there are two separate time scales: one is associatide gets very large both nedg, and in the limitT—0.

reliable results. Some of the main features of the dynamics ot
the SEV model are shown in Fig. 3. We measure the energx
density of the system with respect to the ground state:

B. Lifetime of supercooled states
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4D/T

i i o= 7€ Te— 18
. 'y e 7€ 1-(TITy) (18)
N 0.4 [ [ [ 7 wherey is a(microscopig¢ rate that depends only weakly on
= T and T.. Physically, the nucleation rate is suppressed by a
= 03k s Boltzmann factor that arises from the activated dynamics,
and by a factor oA/ T=(T./T)—1, whereAu is the free
energy difference between ordered and disordered phases.
02 | " . In other words, behavior nedr, is characterized by a
10° 108 107 108 separation of the nucleation time from the relaxation time
t The minimum in the nucleation time occurs at
Ip T T,=TJ1-(TJ4D) + O(T/D)2. (19)
08F 7 The relaxation time in the paramagnet is given approxi-
— =0 mately by 7=0.14e%P'T, so at the minimum we have’
S0 —asled ] ~0.1460MM+312) and 7' ~0.174D/To)e®/ 1L The re-
504_ T thél% i sult is that 7, .>7 as long asT.<T,~D, which is the
— Ll A regime of interest in this section. The two time scales are
02+ r=8e7 E well separated for all temperatures betwd@grand T..
This separation results from the small amount of free en-
e ];)3 = 1(')4 1(') e ergy that is released on ordering. States in which these times

are well separated are “supercooled” in the sense that the
degrees of freedom associated with the relaxation time ap-

FIG. 5. (Top) Fraction of broken bonds against waiting time in pear to equilibrate in a state that is known to be unstable at

the supercooled stat&=0.996T., T.=0.444. (Bottom) Autocor-
relation function C(t)=(oyj(t+t,)0y(t,)) for the waiting times

long times.
At very low temperatures, we see thaf,. will become

marked in the top figure. The two-time function appears stationarysmaller than the extrapolated relaxation timg,~ e%°'T.

until the system starts to nucleate at around ¥’ Monte Carlo

sweeps.

The result is that the physical relaxation time at low tempera-
tures is smaller thae®®'". The dynamics of the aging state
are faster than those of a similar state withO.

NearT,, the states are supercooled. At very low tempera- These results may be interpreted in the picture of the
tures, the lifetimes are similarly long, but in this case theymodel as a combination of a zero-temperature dynamical
are of the same order as the spin relaxation time. These statéixed point and a finite temperature thermodynamic singular-
are not equilibrated in a metastable basin; rather, their longfy. The spin relaxation time is controlled by the activated
lifetimes reflect the drastic slowing down of all time scales aslynamics associated with the zero-temperature fixed point. It
the temperature is reduced. is large compared to microscopic time scales, but small com-

From Fig. 6, we conjecture that the nucleation time hagpared to the lifetime of the supercooled state. That lifetime is
the form very long near the thermodynamic transition: the slowing
down is due to the small free energy difference between
paramagnetic and ferromagnetic states. We comment here
X T.=044D that “soft modes” at large length scales are not relevant to the
+ T,=050D e behavior observed in simulations, due to the narrowness of
10'F . the critical region.

X K ] While supercooled states are familiar in systems with first
>< 1 order phase transitions, they are not usually observed near
] second order transitions, such as the one discussed in this
work. In first order systems, the nucleation time may be pre-
4 dicted by thermodynamic arguments. The free energy of a
] (d-dimensional droplet of ordered phase in a disordered
background is approximatelyr®—Aur9 wherer is the lin-
ear size of the droplety the surface tension, anju the free
energy difference between the two phases. Thus, nucleation

FIG. 6. Nucleation times af.=0.5 andT.=0.44D, measured requires the fqrmatlon of a droplet OT linear S'z*.ev O-/A’l_l“l’
by averaging over several runs similar to those in Fig. 5. The temWIth an a_ssomgted free energy k_)arrler prpportlonaA}:o
perature increases from left to right, but note that the zero of thdin two dimensionis 12'he nucleation rate is therefore sup-
logarithmic scale is af,, away to the right. The dashed lines are fits pressed by a facta /T4, This is exponential suppression
to the form of Eq.(18) using the same value ¢f=0.17. This form  of nucleation.
captures the qualitative features of the curve: a power law increase From Eg. (18), we see that the SEV model has linear
nearT, and an exponential divergence at low temperatures. suppression: the nucleation rate is proportionalAjo. This

nuc
e

10°F & 4

0.001
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t 10° 10° 10* . 10° 10°
FIG. 7. Plot showing aging of the paramagnet. We plots a
function of time after a quench from infinite temperature Tto FIG. 8. Aging of the system at a temperature 0.995T.. We
=0.28@, with J=0. The dashed line is a guide to the eye, corre-have T;=0.45ID so thatT>T,. We plot n, and n,/2n, after a
sponding to a decay proportional t&f4> guench from infinite temperature. Both quantities are equal until the

supercooled state becomes unstable. At these long timede-

second order system has weaker suppression than that prcer?ases‘ but the ratru%/an femains constant with a value approxi-

—a-2DIT
dicted for first order systems. Since the transition in the SE\)nater equal tec=e .

model is second order, ther_e are processes by which the bu{g equilibrate an,=c (with n,=0.5), before aging toward the
of the system may be continuously changed from palralmagﬁarromagnetic state. In Fig. 8 we show a similar scenario, but

net to ferromagnet, without a large free energy barrier. Thesgontinuing to slightly longer times. At these long times, the

processes are slow because they require cooperative motiggstem ages with the ratia,/2n,) = c. The decrease af,

of many spins, but the exponential slowdown that WOU|d(§1appens on the long time scale given hy, However, the

result from a high energy intermediate state is not observe laquette concentration. is reacting on a much faster time
While the phenomenology of the SEV model resembles tha? aclle The inter retat:io““pn is th hags stabilized in an envi-
of first-order systems, the lifetimes of supercooled states ten ) P ag

. . : . ronment set by the current value of. It seems that the
to be shorter than those in systems with diverging free en- .

. . . stable value ofy, is around 2n;,
ergy barriers neall.. In this respect, the SEV model is an ; P .
. If instead we quench to a temperature beldy there is
imperfect model of a glass former. However, we argue that o . !
. . nQ apparent equilibration at,=c. Instead, the effect of fi-

the free energy barrier between ordered and disordered statﬁI = J becomes apparent wham~e2Te>c. There is a
in first order systems should mean that the supercooled states ~ " PP . N ' :

e . ransient effect as, begins to change, but the long time
are less affected by the critical point than those of the SE : . ) DT

. S g . behavior again has a constant ratig/ 2n,,) =0.8¢ c (see

model. Thus, if the thermodynamic singularity is largely ir- ig. 9. Simulations indicate that th nstant val f
relevant in this model, then we expect it to be even Ies{ng/én') cem t(()) depend o, a aho en C;nd% ara gﬁl 0
relevant in similar first order systems. p/ £Np) SEEMS P T as shown, o vary only
weakly with T. Further, the exponent associated with the
aging appears to be similar to that in the paramagnetic state
C. Rate equation approach and aging behavior (around 0.4% The natural interpretation is that the aging of
these states is controlled in the same way as the aging of the

In order to understand the results of the previous sectio . e .
we give a brief discussion of the aging behavior of the sysr:baramagnet. by the slow diffusion of excited plaquettes. The

tem. We parametrize this behavior in terms of mean field rate 0.1
equations for the observableg and n,. This will provide
further evidence that the supercooled states are characterized
by fast dynamics for the concentration of excited plaquettes,
N, combined with much slower dynamics for their spatial
ordering(measured byy,).
In paramagnetic states with<D, the equilibrium value
of ny is 0.5 and that ofy, is c=e™?"'T. Aging toward equi-
librium occurs atn,=0.5, with n,~t™°4° (a sample trace is
shown in Fig. 7, but the observed exponent is independent of
temperature, as long as we work betwéenand T,). The
rate is limited by the slow diffusion of excited plaquettes — 0.001 =l ol ol
(there is no simple diffusive process for isolated excitations 10 10 10 10 10 10
There are two regimes for the aging toward the ferromag-
netic state. We defind, as the temperature at which the  FIG. 9. Aging atT=0.36D, with T,=0.44D, so thatT<T,.
nucleation time is minimafrecall Fig. 6. As shown in Fig.  The ration,/2n, deviates fronn, at a value arouné2°'T¢, so the
3, after quenching td nearT; (T>T,), the system appears system does not reach the supercooled state mytit=e 2P/,

0.01
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dynamics ofn, are now faster than those of, and the
spatial ordering of the excited plaquettes is responding faste !
than the plaquette density.
This description of the aging behavior is consistent with
the following conjectured rate equations:

TN, = o242, = ny), (20)

np/ 2n A

0.01

DT Megn, = Nonp[1 — (TITY](Xp— 2np),  (22)

where X,=min(1,n,Ae®®'Te). The significance of this quan- 0001 ]

tity is thatn, would equilibrate taX,/2 if the concentration : o0 i : s 10(')00'

of plaguettes were constrained to be equahjoThe expo- el

nent 2.2 in Eq.(20) is fixed by the exponent 0.45 for the

power law decay of the energy in the paramagnetic pfese FIG. 10. Fit to the data of Figs. 8+ symbol3 and 9(X sym-

shown in Fig. 7. The overall scaling of time with tempera- bols) using mean field rate equatioi20) and (21). Note that the

ture in that equation is also fixed by the aging of the paraieft and right panels each show data from two runs, showing how

magnetic states. The scaling of time in E2{l) is determined the different regimes are captured by the same rate equations. Pa-

by the scaling of the nucleation time in E{.8). rameters aré\,,\p,A)=(350,17,0.85 for the data of Fig. 8, and
The adjustable parameters of the theory are therefore th@p,Ap,A)=(350,17,1.2p for those of Fig. 9.

rates\, and\;,, and the constark. The two rates are micro-

scopic frequencies reflecting the cooperative motion of thehese states. To understand the correlations in the aging state,

spins required to chang® or n,. The constank determines it would be desirable to study the thermodynamics of the

the ratio of n, and n, when the aging is controlled by excited plaquettes while working at fixeg. However, this is

plaquette diffusionas in Flg 9. The instability of the su- well beyond the scope of this paper.

percooled state means tha?®'Te< ®®'T: the data of Fig. 9 Note that there is no provision in Eq€0) and (21) for

are consistent witli1/A) =0.8, as mentioned above. equilibration in a ferromagnetic state. However, the large in-
We make no attempt to justify these rate equations onernal energy difference between paramagnetic and ferro-

microscopic grounds. For example, the exponent 2.2 in Egmagnetic states means that this equilibration is not observed

(20 is a nontrivial decay exponent for an annihilation- on time scales that are accessible in simulation. Therefore,

diffusion problem in which diffusion of single excited Egs.(20) and(21) appear to be valid over time scales that are

plaguettes is suppressed by the kinetic constraint. We imagseveral orders of magnitude longer than the lifetimes of the

ine “integrating out” all the microscopic degrees of freedom:supercooled states.

the effect of the complicated fluctuation effects appears only |t is simple to verify that the qualitative behavior of Figs.

in this exponent. However, while their microscopic origin is 4 and 7-9 may be fitted by Eq&0) and (21), with appro-

unclear, the interesting features of these equationglatee  priate values of Ny, Ap,A). See Fig. 10, in which we show

different temperature scaling of the times associated with thgeasonable agreement. Note, however, that the onset of

two degrees of freedom, ar@) the presence of points at npycleation from the supercooled state is more sudden than

which one degree of freedom is not changing. The first feathat predicted by the mean field equations. The initial order-

ture leads to a separation of time scales in the problenng is slower than the power law predicted by these simple

When this is combined with the second feature, the apparemjte equations.

metastability of the supercooled states becomes possible. In The requirement of different parameters to fit the different

this case, the faster degree of freedormjs which equili-  simulations in Fig. 10 show the rather simplistic assumptions

brates at 2n, on a time scale that is fast enough thgtcan  for the temperature scaling in the mean field equations. That

be considered to be constant. The aging of the supercoolgg, the linear suppression of the nucleation rate With-T)

state then has a time scale determined by the rate equatigf valid only nearT,, necessitating adjustment of, at

for n,. That degree of freedom is trying to reach apparensmaller temperatures. We have already commented Ahat

equilibration atn,Ae?>'Te/2, butn, is the faster degree of il be temperature dependent, but that this dependence has

n, decreases toward it. This results in the aging at constanhat quantity on..

ny/np that is shown in Fig. 8. An exactly analogous process  The fits of Fig. 10 using these mean field equations sup-

is taking place in Fig. 9, except thaf, is now the slow  port our interpretation of Fig. 6 in terms of purely dynamical

degree of freedom. _ effects that do not depend on thermodynamic quantities like

degrees of freedom set a “target value” for the fast ones, at

which the fast degrees of freedom appear to equilibrate when

viewed on the fast' time scale: This is t_he sense in which the IV. DISCUSSION AND CONCLUSIONS

states discussed in the previous section are “supercooled.”

Their lifetime is then set by the slow degrees of freedom, and We have shown that the SEV model can be interpreted in
this lifetime is much longer than relaxation time scales interms of a high temperature state in which excitations are

10.01

X
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free and pointlike, and a low temperature phase in whickBiroli [25]. Since there is no perimeter for a surface tension
these free excitations are confined into composite objectsp couple to, the entropic forces are strong enough to stabi-
with a characteristic size that is smaller than their spacinglize the mosaic state. This is the situation in the SEV model
The dynamics of the paramagnet are well described in a maat finite J, but T>T..
bility field picture similar to the FA model. If we accept the plaquette model as a realization of the
Near the transition to the ordered phase, supercoolegntropic droplet picture, it is interesting to note that the only
paramagnetic states have long lifetimes. Two-time correlafixeq point in that model is at zero temperature. That is,
tion fun_ctions shovy stationarity in these states, and b(_)th theiélthough the entropy falls rapidly as the temperature is re-
dynamics and their thermodynamics are well described by ceq throughr,, any extrapolation that leads ®=0 at a

t_he plaguette model. However, these states have finite I'feﬁnite temperature is not valid. Rather, the entropy remains
times, beyond which stationarity is lost and it becomes CleaFegular at all temperature@ven those in which the glassy

that they are unstable to the ferromagnetic state. This situ hase is completely unstable to the crystah fact, Syase

tion resembles the situation in physical glass formers, exce n .
that the presence of a first order transition in those systems Surystarll the way down toT'=0 (WhereSy,gsis the entropy

means that the lifetimes of the supercooled states diverg@ssOCiated with the plaquette model & is the entropy

much faster neaf, than in the SEV model. of the SEV model with the same value Bfand at the same

We have also shown that the mean field rate equation©Mperature In this scenario the Kauzmann parad@®] is
(20) and(21) are a suitable framework for describing the out S€€n as arising from an unphysical linear extrapolation of the
of equilibrium (aging behavior of the SEV model. glassy entropy.

We end this work with some comments about the signifi- 70 conclude, we have shown that the plaquette model
cance of these results in the context of the literature. Comlimit of the SEV model describes its behavior in both stable
paring with the work of Cavagnat al. [12], we note the and supercooled paramagnetic states. This model resembles
similarity between the phenomenology of their model andooth the mobility field description of glassy systefas ex-
the SEV model. However, the exact solution of the eight-emplified by the FA modgland the entropic droplet picture.
vertex model, and the understanding of the dynamics of th&lowever, there is no finite temperature fixed point in the
paramagnetic state that arises from previous work on théheory of the glassy states; thus Kauzmann's paradox is
plaguette model allow us to investigate the behavior from @voided. Taken together, these results are further evidence
more microscopic viewpoint. that theories without thermodynamic singularities at finite

We illustrate this with three points. First, the internal en-temperature are suitable for describing glassy siétes].
ergy of the SEV model changes very rapidly aroufd
From simulation eviden_c_e alone, we migterroneously ACKNOWLEDGMENTS
conclude that the transition was first order. However, we
know from theoretical considerations that the transition is We thank A. Cavagna, D. Chandler, and S. Whitelam for
second order. This knowledge is important when discussingiscussions. We acknowledge financial support from EPSRC
the possible metastability of supercooled states. Second, tgrants No. GR/R83712/01 and No. GR/S54074/01 and Uni-
power law suppression of nucleation nelrin the SEV  versity of Nottingham Grant No. FEF 3024.
model results from the fact that our transition is second or-
der. For a first order transition we would expect an exponen-
tial suppression. The nature of this suppression in Rief]
does not seem to be clear. And finally, we are able to identify
the minimum in Fig. 6 as arising not from the crossing of a In this appendix, we consider the series for the free energy
spinodal, but rather from a crossover in time scales. given by Baxte19]:

We would also like to point out some similarities between
the paramagnetic phase of the SEV model and the models XM (g/x)™ - 121 -xM)?

: ; , (fIM=-Inc' -2 (A1)
which are conjectured to be controlled by the behavior of = m(1-g*™)(1+xm?)
entropic droplet$7,25]. As mentioned above, the invariance 5 ,
of the Hamiltonian atJ=0 under flipping a whole row or Whereq, x* andc’ depend on the model parameter&T and
column of spins leads to a lardbut nonextensiveground JIT. Th? parametez in Baxter’s _calcqlatlon is 1in the SEV
state entropy. We have shown that the introductiord oé model since the Hamlltoglan is mva_lrl_ant under 90° rotations.
largely irrelevant abovel, and in the supercooled states. ' n€ dependence ofandx” on the original parametet®, J)
Therefore, we may interpret the low temperature paramag$ rather indirect: the main task of this appendix will be to
netic states(T,<T<T,) as a mosaic of the many=0 derive S|mplg relations betweéq,x?) and(D/T,J/T) in the
ground states. The “droplets” are referred to as “entropic” inférromagnetic phqse. ' o
this scenario. This name arises because there does not seemiowever, we first consider the contribution of thecln
to be an energetic argument for their stability, so it is asterm to the free energy. In the paramagnetic phase we have
sumed that they are stabilized by some entropic mechanism. I = DIT JIT . DIT
In the plaquette model, the borders between droplets of each (fpw/T) ~ In ¢’ = In[e>" cosPT + &) (A2)
ground state are not one dimensional as one might expeayhich is the result quoted as E¢p), and may be used to
but rather arise from pointlike excited plaquettes. This situ-calculate properties of the paramagnetic phase. However, in
ation was alluded to in the recent paper of Bouchaud anthe ferromagnetic phase we have=eP*2)'T, so taking only

APPENDIX: LOW AND HIGH TEMPERATURE
EXPANSIONS OF THE EIGHT-VERTEX MODEL
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the leading term leads to the trivial resulf=n,=0. There

are no excitations in the ferromagnetic phase at this order. q= 128 sinf(23/T) Sink2Im)’

We must therefore estimate the parametem@nd q in this
phase.

The prescription for calculating these parameters is give

by Baxter[19], but we give a brief review. The ratid3/T
andJ/T are used to calculate four parametesh,c,d). The

partition function is symmetric under interchange of the four(z)'
quantities(a+b,c+d). We may therefore map the parameters

into the principal regime, to givéa’,b’,c’,d’) satisfying

c'+d’>c’'-d'=a’+b’'>a’-b’'=0. These parameters are

used to calculate A=[-(c'?+d'?)+(a’?+b'?)]/(2c'd’
+2a’b’) and y=(c’d’'/a’'b’).
In the ferromagnetic phase we hayeexpg4D/T). We

work atT,<D so y is a very large number, and we arrive at

_ 1 -
A= COSKN/T){l -y 1(1 +m> +O(y 2)}

(A3)
The next step is to calculate the paramd¢efrom
Y1+K) =A%(1+9)2-(1+9) (A4)
and the result is
g 4DIT
+0(y?). (A5)

K S SINF2IT)[L + costi2a/T)]

We have 6<k<1, andk is the elliptic modulus with nomag.
That is,

n qf dt J“’ dt
- S I 55 =T T 5  5-
0 \’1 _tz\"]. — k2t2 0 \”1 +t2\“’k2+ t2

(A6)
For the series ofAl) to converge quickly, we requirg

<1:in that case EqA6) reduces tay= (k?/16), and there-
fore we have the approximate relation

PHYSICAL REVIEW E/1, 036112(2005

e 8D/T

(AT)

those condition for validity is thak be small, which re-
quires that sint2J/T) <e2?'T. This is the condition that we
are well inside the ferromagnetic phase, as is clear from Eq.

In order to evaluate the terms {Al), we also require an
approximate form fox. The definition ofx is

ln(ﬂ)f dt _f“’ r dt
X2 o \“’/1 —tz\‘ﬂl _k2t2 \37( \’1 +t2\f’k2+t2,

(A8)

from which the relation®<q is clea_r. This integral may be

expanded in a series arour(d/\yk)=0. Equation(A5)

shows that this parameter is smalJi#& T. The result is that
(a/x?) — 1= 4 sinh(2J/T). (A9)

Substituting into/Al), and ignoring all terms witlm=2, we
arrive at

e—8D/T

few == (O =M = ez

(A10)

which gives the resul(11), qualified by the validity condi-
tion

e P < sinh(2J/IT) < 1, (A11)
from which we note that this is not an expansion about

=0, but rather a useful approximation to the free energy in
this part of the parameter space.
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