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We show that applying simple dynamical rules to Baxter’s eight-vertex model leads to a system which
resembles a glass-forming liquid. There are analogies with liquid, supercooled liquid, glassy, and crystalline
states. The disordered phases exhibit strong dynamical heterogeneity at low temperatures, which may be
described in terms of an emergent mobility field. Their dynamics are well described by a simple model with
trivial thermodynamics, but an emergent kinetic constraint. We show that thessecond orderd thermodynamic
transition to the ordered phase may be interpreted in terms of confinement of the excitations in the mobility
field. We also describe the aging of disordered states toward the ordered phase, in terms of simple rate
equations.
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INTRODUCTION

Despite many years of study of glass-forming liquids, the
most suitable paradigm in which to discuss the “glass tran-
sition” and its associated dynamical phenomena remains
controversial. In recent years, there has been progressf1–3g,
driven by the idea that the dynamical properties of glass
formers may be characterized by a zero temperature dynami-
cal fixed pointf2g. This is in contrast to the predictions of
other theories which involve a finite temperature singularity
in the dynamicsf4,5g or the thermodynamics of the relevant
systemf6–8g.

However, there remains an important qualitative differ-
ence between physical glass formers and the models, such as
the Fredrickson-AndersensFAd f9g or Eastf10g modelsssee
Ref. f11g for a reviewd studied in Refs.f1–3g: the crystal
phase is completely absent from these models. As a result,
they are relevant if the glass-forming liquid is in a long-lived
sbut metastabled supercooled phase. Further, interplay be-
tween the thermodynamic singularity associated with the
transition to the crystal and the dynamical fixed point asso-
ciated with the glass is certainly possible, but the FA and
East models cannot capture these phenomena since their
thermodynamics are trivial. There has been recent work
f12,13g ssee also Ref.f14gd investigating these issues with
regard to glassy systems, although without reference to a
glassy fixed point at zero temperature.

The extent to which the FA and East models can be
viewed as pictures of real glasses is therefore contingent on
two main assumptions. First, the behavior of the supercooled
state should not be affected by the proximity of the freezing
transition, since the FA and East models regard glassy slow-
ing down as a purely dynamical effect, not requiring a ther-
modynamic transition. Second, the “mobility field” repre-
sented by the spins in these models should emerge naturally
from atomistic degrees of freedom of the glass former.

One class of models in which this latter effect is demon-
strated are the two-dimensional plaquette modelsf15–17g, in
which an effective dynamical constraint emerges naturally
from a simple spin model. There are free excitations in the
spin field which are naturally interpreted as a mobility field.

At temperatures lower than the glassy onset temperatureTo
f3,18g, the dynamics are strongly heterogeneous, and slow
down rapidly with decreasing temperature.

In this paper, we address the other issue mentioned above:
how are dynamics of metastable supercooled states affected
by the presence of the freezing transition? We study dynam-
ics in the eight-vertex model, whose thermodynamics were
solved by Baxterf19g. The model may be treated as a gen-
eralization of the square plaquette modelf15,17g; the effect
of this generalization is to introduce assecond orderd phase
transition to an ordered state at a finite temperatureTc. We
identify this with a freezing transition, and investigate the
dynamics around this transition. The transition temperature
Tc may be varied with respect to the glassy onset temperature
To. This fact, together with the exactly solved thermodynam-
ics, gives an extra degree of control to our simulations.

We will show that we may prepare long-lived “super-
cooled” states belowTc, whose dynamics are controlled by
the effective dynamical constraint of the plaquette model,
and are not affected by the freezing transition for times
shorter than the lifetime of the supercooled state.

To be more precise, the dynamics of the system within the
supercooled state resemble those of strong glasses, and arise
from diffusing pointlike excitations in a mobility fieldf1–3g.
Considering supercooled states at different temperatures, we
find that they obey dynamical scaling consistent with a zero-
temperature fixed point. The presence of the ferromagnetic
transition means that these states have a finite lifetime, but it
does not affect the dynamics on time scales shorter than this
lifetime. This is consistent with the assumptions made when
modeling glass formers using models without an ordering
transitionf1–3g.

The form of the paper is as follows. In Sec. I, we describe
the model, identify relevant energy scales and their hierar-
chy, and discuss the relation between the spins of our model
and the atomistic degrees of freedom of a physical glass
former. We discuss the nature of the ordered and disordered
phases of the model system in Sec. II: we then use this in-
formation to interpret simulations of the dynamics of the
model in Sec. III. Finally, we summarize our results and
discuss their significance for models of the glass transition.
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I. THE MODEL

The zero-field eight-vertex model solved by Baxterf19g
may be expressed either in terms of its original vertices, or as
an Ising model with Hamiltonian

H = o
i j

f− Dsi jsi+1,jsi,j+1si+1,j+1 − Jssi jsi+1,j+1 + si+1,jsi,j+1dg

s1d

where thehsi jj are Ising spins on a square lattice. We note
that the Ising coupling is betweennext nearestneighbors on
the square lattice: atD=0 there are two independent sublat-
tices, with Ising couplingJ within each sublattice. There is a
transition atJ=sT/2dsinh−1s1d to a fourfold degenerate or-
dered statesthere are two ferromagnetic and two antiferro-
magnetic ground states, related by flipping all the spins on
either sublatticed. As D is increased from zero, the lattices
become coupled, and the transition moves to a higher tem-
perature: the critical temperatureTc satisfies

sinhs2J/Tcd = exps− 2D/Tcd. s2d

The transition to an ordered state occurs for all finiteJ: we
also note that ifD.J then the transition temperature will be
much larger thanJ.

Thus far we have considered only staticsthermodynamicd
properties of the eight-vertex model. In order to study the
time evolution of this model, we must specify dynamical
rules. We use simple spin flips with rates given by Glauber
dynamics. We refer to the combination of the Hamiltonian
and the dynamical rules as the spin-flip eight-vertexsSEVd
model.

If we set J=0 in the SEV model, we arrive at thestwo-
dimensionald plaquette modelf15,20,21g. In this limit there
is no ordering at any finite temperature: all two-point static
correlations vanish. This may be most easily demonstrated
by noting that ifJ=0 then the Hamiltonian is invariant under
flipping all of the spins in any row or column of the square
lattice. The dynamics of this model are dominated by a zero-
temperature dynamical fixed point for temperaturesT that
are small compared toD. Since we are studying slow dynam-
ics we work throughout atT,D.

We have now identified two temperature scales in the
problem: the onset of glassy dynamics occurs atT=To,D
and the critical point in the system is atT=Tc. If Tc.To then
we expect the slow dynamics to be observable only in the
ordered phase: the more interesting case isTo.Tc, in which
case the dynamics are slow near the transition, and we may
investigate the effect of the effective kinetic constraint as we
cool the system throughTc. We therefore work atTc,D:
from Eq. s2d, this means thatJ,Tc. As a result we have the
hierarchyJ, sT,Tcd,D which is obeyed throughout this pa-
per.

Relation of this work to physical glass formers

Before investigating the SEV model more closely, we es-
tablish the relationship between this model and physical
glass formers: it is not obvious at first sight precisely how a
model of Ising spins should be related to an atomistic sys-

tem. The spin variables represent the microscopic degrees of
freedom of the glass former. This is distinct from the more
heuristic approach taken in the FA and East models in which
the spins represent a coarse-grained “mobility field.” The
SEV model is more similar to the plaquette modelf17g in
that the effective kinetic constraint responsible for the critical
slowing down at zero temperature is not inserted explicitly,
but arises from the combination of the Hamiltonian and
simple spin-flip dynamics. In Sec. III we will comment
briefly on how the dynamics may be interpreted within a
“mobility field” picture like that of the FA model.

In the previous section we identified the two temperature
scales in the model as the glassy onset temperatureTo,D
and the transition temperatureTc,To. These separate the
behavior of the system into three regimes. We argue that the
high temperature phase of the SEV model withT. sTo,Tcd
resembles a liquidlike state of the atomistic system, since it
lacks any two-point correlations between the spins.

The second regime isTc,T,To: there are still no static
correlations between the spins but there are strongdynamical
correlations. This state resembles a viscous liquid whose re-
laxation time is large compared to microscopic time scales.
We emphasize that the crossover between this regime and the
high temperature behavior is smooth: there is no sharp tran-
sition at To. In the viscous liquid, the atomistic degrees of
freedom are “jammed” over large regions of the system: re-
laxation in these regions is frustrated by large energy barri-
ers. Dynamical heterogeneity then arises naturally, due to the
presence of mobile regions where the energy barriers are
smaller than average. There are very many paramagnetic
states in the spin system, even at low temperaturesscom-
pared toDd: these resemble the many possible jammed states
of the glass former.

Having argued that the paramagnetic phase of our model
is liquidlike, and shows glassy behavior at low temperatures,
it is natural to interpret the transition in the model as a freez-
ing transition. We identify the ferromagnetic phase with the
crystalline states of the glass former. As the temperature is
lowered throughTc the entropy falls rapidly as the very
many paramagneticsjammedd states are now thermodynami-
cally unstable with respect to the ferromagnet. The effect of
the dynamical fixed point on the transition between paramag-
net and ferromagnet is the main subject of the following
sections. In particular we show that “supercooling” of the
paramagnetic state is possible as long asTc!D.

II. STATIC PROPERTIES OF THE SEV MODEL

We now discuss the microscopic structure of the ferro-
magnetic and paramagnetic states in the model of Eq.s1d.
This will allow us to identify the relevant correlation func-
tions for our study of the dynamics of the system. We de-
scribe the paramagnetic state in terms of small deviations
from the behavior of the model withJ=0, and the ferromag-
netic state in terms of excitations in an ordered background.
This will lead us to interpret the transition in terms of free
defects aboveTc that become confined at the transition,
forming composite excitations. We will also show that these
descriptions are valid even rather close to the transition, de-
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spite being based on expansions around the fully ordered or
fully disordered states. In other words, the critical region is
very narrow.

We begin by recalling some results for theJ=0 limit
of the model f20,21g. At J=0, we write pi
=si jsi,j+1si+1,jsi+1,j+1, and the Hamiltonian reduces to

HJ=0 = − Do
i

pi , s3d

where thepi are Ising-like degrees of freedom, defined on the
plaquettes of the square lattice. In the thermodynamic limit,
these plaquettes are independent degrees of freedom, which
define the state of the spin system, up to transformations that
flip all the spins in any row or columnsleavingHJ=0 invari-
antd. We observe that this results in a ground state entropy
proportional to the linear size of the system,L sthere areN
=L2 spins in the systemd.

In finite systems, the presence of boundary conditions
may impose constraints on the plaquettes. For example, im-
posing periodic boundaries on the spins means that the num-
ber of excited plaquettes in all rows and columns must be
even swe believe that this fact led to the strong finite size
effects seen in Ref.f21gd.

As discussed in Ref.f21g, the low temperature states of
the model withJ=0 are best interpreted in terms of closed
loops with excited plaquettes at each vertexssee Fig. 1d. If
we move across the lattice, any spin flip is accompanied by
our crossing the perimeter of a loop. IfJ=0 then each
plaquette is independent: the vertices of the loops are a free
lattice gas with densitys1+e2D/Td−1. The free energy per site
is simply

fJ=0 = − T lnf2 coshsD/Tdg. s4d

At finite J, we make use of Baxter’s solution of the eight-
vertex modelf19g. In the Appendix, we show that the free
energy per site forT@Tc is given approximately by

fPM
s0d = − T lnfeD/T coshs2J/Td + e−D/Tg. s5d

Since we work exclusively atJ,T, Eq. s5d is rather close to
the J=0 expressions4d.

We focus on two correlation functions, the density of ex-
cited plaquettesnp and the density of broken Ising bondsnb.
Their definitions are

np =
1

2
s1 − ksi jsi,j+1si+1,jsi+1,j+1ld, s6d

nb =
1

4
s2 − ksi jsi+1,j+1 + si+1,jsi,j+1ld. s7d

In the representation of Fig. 1, the concentration of verti-
ces is given bynp. The parameternb is related to the total
perimeter of the closed loops of that figure, and measures the
spatial ordering of the vertices. The free plaquettes observed
at J=0 havenb=s1/2d. As nb is reduced, the reduction in the
loop perimeter starts to constrain the positions of the verti-
ces, and spatial correlations appear.

The internal energy per site is given by

kH/Nl = 2Dnp + 4Jnb − sD + 2Jd s8d

so we havenp=s1+]f /]Dd /2 andnb=s2+]f /]Jd /4. Using
Eq. s5d, the paramagnetic state has

np . f1 + e2D/T coshs2J/Tdg−1, s9d

nb . s1/2d −
sinhs2J/Td

coshs2J/Td + e−2D/T . s10d

We see that introducingJ leads to small negative corrections
to the J=0 values ofnp and nb. However, forT,D, the
concentration of excited plaquettes is still approximatelyc
=e−2D/T and these plaquettes are only weakly interacting
sincenb.s1/2d. A typical configuration is shown in Fig. 2:
there are no two-point correlations between the spins, but the
loop vertices are dilute sinceT!D.

We now consider the system at temperatures lower than
Tc. As shown in the Appendix, a good approximation to the
free energy per site in the ferromagnetic phase is

FIG. 1. Sketch showing the relation between spin states, excited
plaquettes, and domain walls. Upsdownd spins are represented by
filled semptyd circles. Domain walls form closed loops with excited
plaquettessenergy cost 2Dd at each isolated cornersthere is no
energy cost associated with wall crossingsd. A domain wall costs
energy 2J per unit length when running through a ferromagnetically
ordered region. Interactions between domain walls reduce this ten-
sion in disordered states.

FIG. 2. Typical states of the spin system abovesleftd and below
srightd Tc. Some of the excited plaquettes are identified by arrows.
They are “free” aboveTc, but “confined” on corners of rectangular
excitations in the ferromagnetic phase.
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fFM
s0d = − D − 2J −

Te−8D/T

16 sinh2s2J/Td
s11d

which is valid forJ,T,Tc,D. In this regime

np =
e−8D/T

4 sinh2s2J/Td
, s12d

nb =
e−8D/T

16 sinh2s2J/Tdtanhs2J/Td
. s13d

For excitations in a ferromagnetic background,nb is di-
rectly related to the perimeter of the closed loops shown in
Fig. 1. Equationss12d ands13d are therefore consistent with
rectangular excitation loops with an excited plaquette at each
corner stotal energy cost 8Dd. The expectation of the loop
perimeter is approximatelysT/2Jd. This is much smaller than
the typical spacing between loops, given bys8J/Tde4D/T.
This situation is sketched in Fig. 2.

The density of loops is given by the number of ways
of forming such a loop, multiplied by a Boltzmann
factor e−8D/T. We therefore identify the entropy per loop as
Sloop,−2 lnf4 sinhs2J/Tdg. The apparent divergence of the
perimetersand therefore the entropyd at small J represents
the breakdown of the ordered state which happens atTc. The
transition to the paramagnetic state occurs when the energy
cost for adding two vertices to the loops4Dd is balanced by
the entropy gain associated with adding an extra rectangular
segment to the loop. This entropy gain is approximately
Sloop. We may therefore obtain an estimate of the transition
temperature by setting 4D /Tc=Sloop. The result is

4 sinhs2J/Tcd . exps− 2D/Tcd, s14d

which differs from the exact results2d only by the constant
leading factor of 4. The real transition temperature is lower
than that predicted by this method because interactions be-
tween the loops act to reduce the energies at large perimeters.

Thus we interpret the transition to the paramagnet as de-
confinement of localized composite excitations. The state be-
comes disordered when the loop size becomes comparable
with the spacing between loops.

The magnetization and correlation lengths may also be
calculated in similar seriesssee the Appendixd. The magne-
tization M0 may be used to calculate the fraction of spins
opposed to the mean spin,

ns =
1 − M0

2
=

e−8D/T

256 sinh4s2J/Td
. s15d

Assuming that the lowest lying excitations are rectangular
domains with four excited plaquettes per domain, we expect
a relation of the formns=snp/4dsnb/npd2. We see that this is
true for smallJ/T frecall thatsJ/Td is a small number, al-
though expansions aboutJ=0 are not valid in general since
we are in an ordered phaseg.

Thus we have arrived at the following picture of the ther-
modynamics of the SEV model. There is a density of excited
plaquettesnp, which sit on the corners of overlapping closed
loops. The total loop perimeter is measured in terms of the
parameternb: the point nb=s1/2d is the maximally disor-

dered spin field, in which the excited plaquettes are free.
Away from the critical regionswhich is narrowd, the excited
plaquettes are nearly free in the paramagnetic phase: in the
ferromagnetic phase they are confined on corners of rectan-
gular loops whose typical size is much smaller than their
inverse density.

So far, our microscopic arguments have been purely ther-
modynamic: we have not considered any dynamics. In the
next section, we investigate the dynamics of the SEV model.

III. DYNAMICS

This section contains the key results of this paper. We
briefly describe the dynamics of the paramagnetic state,
which are essentially independent ofJ. We then discuss the
onset of ordering as the temperature is lowered throughTc.
We will find that supercooled states exist nearTc, which are
well described by a simple “mobility field” picture for times
shorter than their lifetime. We then discuss the extent to
which these states can be regarded as metastable, and what
determines their lifetimes.

We begin with a very brief review of the dynamics in the
paramagnetic state withT,To. SinceJ may be treated per-
turbatively in this regime, we write the Hamiltonian as in Eq.
s3d. Flipping a single spin involves flipping of the four
plaquette variables adjacent to that spin. Thus spins adjacent
to four unexcited plaquettes have a flipping rate that is sup-
pressed by a factore−8D/T. However, the flip rate of spins
adjacent to exactly one excited plaquette are suppressed only
by a factore−4D/T. The excited plaquettes mark mobile re-
gions in which spin flips are rather likely. Thus the model
resembles kinetically constrained systems such as the FA
model f9g.

The relaxation time of the spins depends on the tempera-
ture and on the density of excited plaquettes, according to
t,np

−1e4D/T. This arises from localized one-dimensional dif-
fusion of pairs of excited plaquettesf20,21g. In equilibrium,
we havenp.c=e−2D/T, so the relaxation time diverges as
c−3. More precisely, we have the scaling relationf20g

ksi jstwdsi jst + twdlc,eq= fsc3td s16d

for the on-site autocorrelation function in equilibrium at a
given value ofc. This is strong glass behavior in the classi-
fication of Angell f22g.

We now turn to results for the SEV model belowTc,
where J may not be treated perturbatively. We discuss the
phenomenological similarities and differences between this
model and physical glass formers. We then interpret this be-
havior with the aid of mean field rate equations.

A. Existence of supercooled states

We start this section by demonstrating how a supercooled
state may be formed belowTc. We investigate the dynamics
of the system by means of simulations which use a continu-
ous time Monte Carlo algorithmf23g, with periodic bound-
ary conditions. The number of excited plaquettes in each row
and column is constrained to be even in this treatment, so the
linear size of the system must be greater thans2/npd for
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reliable results. Some of the main features of the dynamics of
the SEV model are shown in Fig. 3. We measure the energy
density of the system with respect to the ground state:

u = kH/Nl + D + 2J. s17d

The dashed trace in Fig. 3 shows the internal energy density
after quenching to a temperatureT1 such thatTc,T1,D.
After an initial transient, the system ages in a power law
fashion toward equilibration atu,2De−2D/T1+2J. The pla-
teau atsu/Dd.0.2 is a characteristic feature of models with
kinetic constraintsswhether explicitf9g or emergentf16,24gd.
It represents the onset of “activated” dynamics. The equili-
bration time for the paramagnet scales as a power ofc
=e−2D/T. All these features are seen in the model withJ=0
f15,17g.

In contrast, the full trace in Fig. 3 shows the behavior on
quenching to a temperatureT2 satisfying T2,Tc,D, but
with T2 close to Tc. The behavior resembles that of the
quench to T1, including apparent equilibration atu
,2De−2D/T2+2J. However, this state is not stable, and the
energy falls further at longer times. This behavior resembles
that of glass formers, where the state on the lower plateau
would be called a supercooled liquid. The behavior is also
qualitatively similar to that observed in Ref.f12g.

In order to focus on the supercooled states, we show fur-
ther simulations in Fig. 4. The system is cooled throughTc in
a single small step. We plotnp andnb as functions of time.
From the plot ofnp, we see that the density of free excita-
tions responds relatively quickly to the change in tempera-
ture: it falls fromc1=e−2D/T1 to c2=e−2D/T2, where it appears
to stabilize.

The response ofnb to the cooling is much slower. Recall
that this correlation function measures the clustering of ex-
cited plaquettes. This clustering is a much slower process
than the creation and annihilation steps leading to a change
in the concentration of excitations. Looking at the late times
in Fig. 4 when the clustering does start to occur, the system
ages towards the ferromagnetic state with bothnp and nb
falling together. Taking the two traces in Fig. 4 together, we
see that there are two separate time scales: one is associated

with changes innp, the other with changes innb.
Turning to the supercooled state itself, it is clear from Fig.

4 that it hasnp.c=e−2D/T and nb.s1/2d. This resembles
closely the state that would be formed if we setJ=0 in the
Hamiltonian. Thus the effect of the interactions between
plaquettessthe term proportional toJ in the Hamiltoniand is
to set the lifetime of the supercooled state. The properties of
the state itself are independent ofJ. We conclude that the
supercooled state in the SEV model can be well described by
the much simpler plaquette model of Eq.s3d: a kinetically
frustrated model with trivial thermodynamic properties. This
is the assumption made when describing glass formers by
simple models of dynamical heterogeneityf1,3g: in the SEV
model, this assumption seems to be reasonable.

A key property of supercooled states is that two-time cor-
relation functions should be stationary within the super-
cooled state. That is, expectation values of the form
kAstwdAst+ twdl should be independent oftw as long asst
+ twd is less than the lifetime of the states. In Fig.s5d, we
show that the supercooled state withnp=c andnb=s1/2d has
this property. Since the excited plaquettes are uncorrelated in
this state, it may be prepared manually, without the need for
simulation. Further, the single-spin autocorrelation function
in the supercooled state is the same as that in the model with
J=0 at the same temperature. It therefore obeys the dynami-
cal scaling law of Eq.s16d, and is independent ofJ.

As a final comment on Fig. 5, we note that the criterion
that the supercooled state should be long lived is satisfied,
since stationarity holds over time scales much longer than
the single-spin relaxation time. Thus the data in that figure
are consistent with the picture of a supercooled state that
appears to equilibrate in a metastable basin.

B. Lifetime of supercooled states

Having identified a supercooled state at temperatures near
Tc, we now proceed to discuss its lifetime. We prepared
states withnp=c andnb=s1/2d and measured the time taken
for nb to fall to 0.45. Results are shown in Fig. 6. The life-
time gets very large both nearTc, and in the limitT→0.

FIG. 3. Behavior of the system after two quenches from infinite
temperature to just below and just aboveTc=0.45D. The two pla-
teaux correspond to the onset of activated dynamics, and equilibra-
tion in the disorderedsglassyd state. However, the disordered state is
unstable belowTc, as is clear at longer times.

FIG. 4. Behavior of the SEV model after a quench fromT1

=1.02Tc to T2=0.996Tc with Tc=0.45D. We show concentrations of
excited plaquettes,np, and broken bonds,nb. The dotted lines mark
c1,2=e−2D/T1,2.
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NearTc, the states are supercooled. At very low tempera-
tures, the lifetimes are similarly long, but in this case they
are of the same order as the spin relaxation time. These states
are not equilibrated in a metastable basin; rather, their long
lifetimes reflect the drastic slowing down of all time scales as
the temperature is reduced.

From Fig. 6, we conjecture that the nucleation time has
the form

tnuc= ge2D/Tc
e4D/T

1 − sT/Tcd
s18d

whereg is a smicroscopicd rate that depends only weakly on
T and Tc. Physically, the nucleation rate is suppressed by a
Boltzmann factor that arises from the activated dynamics,
and by a factor ofDm /T.sTc/Td−1, whereDm is the free
energy difference between ordered and disordered phases.

In other words, behavior nearTc is characterized by a
separation of the nucleation time from the relaxation timet.
The minimum in the nucleation time occurs at

Tx = Tcf1 − sTc/4Dd + OsTc/Dd2g. s19d

The relaxation time in the paramagnet is given approxi-
mately by t=0.14e6D/T, so at the minimum we havet*

.0.14es6D/Tcd+s3/2d and tnuc
* .0.17s4D /Tcdes6D/Tcd+1. The re-

sult is that tnuc
* .t* as long asTc,To,D, which is the

regime of interest in this section. The two time scales are
well separated for all temperatures betweenTx andTc.

This separation results from the small amount of free en-
ergy that is released on ordering. States in which these times
are well separated are “supercooled” in the sense that the
degrees of freedom associated with the relaxation time ap-
pear to equilibrate in a state that is known to be unstable at
long times.

At very low temperatures, we see thattnuc will become
smaller than the extrapolated relaxation timetJ=0,e6D/T.
The result is that the physical relaxation time at low tempera-
tures is smaller thane6D/T. The dynamics of the aging state
are faster than those of a similar state withJ=0.

These results may be interpreted in the picture of the
model as a combination of a zero-temperature dynamical
fixed point and a finite temperature thermodynamic singular-
ity. The spin relaxation time is controlled by the activated
dynamics associated with the zero-temperature fixed point. It
is large compared to microscopic time scales, but small com-
pared to the lifetime of the supercooled state. That lifetime is
very long near the thermodynamic transition: the slowing
down is due to the small free energy difference between
paramagnetic and ferromagnetic states. We comment here
that “soft modes” at large length scales are not relevant to the
behavior observed in simulations, due to the narrowness of
the critical region.

While supercooled states are familiar in systems with first
order phase transitions, they are not usually observed near
second order transitions, such as the one discussed in this
work. In first order systems, the nucleation time may be pre-
dicted by thermodynamic arguments. The free energy of a
sd-dimensionald droplet of ordered phase in a disordered
background is approximatelysrd−1−Dmrd wherer is the lin-
ear size of the droplet,s the surface tension, andDm the free
energy difference between the two phases. Thus, nucleation
requires the formation of a droplet of linear sizer* ,s /Dm,
with an associated free energy barrier proportional toDm−1

sin two dimensionsd. The nucleation rate is therefore sup-
pressed by a factore−s2/TDm. This is exponential suppression
of nucleation.

From Eq. s18d, we see that the SEV model has linear
suppression: the nucleation rate is proportional toDm. This

FIG. 5. sTopd Fraction of broken bonds against waiting time in
the supercooled state:T=0.996Tc, Tc=0.444D. sBottomd Autocor-
relation function Cstd=ksi j st+ twdsi j stwdl for the waiting times
marked in the top figure. The two-time function appears stationary
until the system starts to nucleate at around 33107 Monte Carlo
sweeps.

FIG. 6. Nucleation times atTc=0.50D andTc=0.44D, measured
by averaging over several runs similar to those in Fig. 5. The tem-
perature increases from left to right, but note that the zero of the
logarithmic scale is atTc, away to the right. The dashed lines are fits
to the form of Eq.s18d using the same value ofg=0.17. This form
captures the qualitative features of the curve: a power law increase
nearTc and an exponential divergence at low temperatures.
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second order system has weaker suppression than that pre-
dicted for first order systems. Since the transition in the SEV
model is second order, there are processes by which the bulk
of the system may be continuously changed from paramag-
net to ferromagnet, without a large free energy barrier. These
processes are slow because they require cooperative motion
of many spins, but the exponential slowdown that would
result from a high energy intermediate state is not observed.
While the phenomenology of the SEV model resembles that
of first-order systems, the lifetimes of supercooled states tend
to be shorter than those in systems with diverging free en-
ergy barriers nearTc. In this respect, the SEV model is an
imperfect model of a glass former. However, we argue that
the free energy barrier between ordered and disordered states
in first order systems should mean that the supercooled states
are less affected by the critical point than those of the SEV
model. Thus, if the thermodynamic singularity is largely ir-
relevant in this model, then we expect it to be even less
relevant in similar first order systems.

C. Rate equation approach and aging behavior

In order to understand the results of the previous section,
we give a brief discussion of the aging behavior of the sys-
tem. We parametrize this behavior in terms of mean field rate
equations for the observablesnp and nb. This will provide
further evidence that the supercooled states are characterized
by fast dynamics for the concentration of excited plaquettes,
np, combined with much slower dynamics for their spatial
orderingsmeasured bynbd.

In paramagnetic states withT,D, the equilibrium value
of nb is 0.5 and that ofnp is c.e−2D/T. Aging toward equi-
librium occurs atnb=0.5, with np, t−0.45 sa sample trace is
shown in Fig. 7, but the observed exponent is independent of
temperature, as long as we work betweenTc and Tod. The
rate is limited by the slow diffusion of excited plaquettes
sthere is no simple diffusive process for isolated excitationsd.

There are two regimes for the aging toward the ferromag-
netic state. We defineTx as the temperature at which the
nucleation time is minimalsrecall Fig. 6d. As shown in Fig.
3, after quenching toT nearTc sT.Txd, the system appears

to equilibrate atnp=c swith nb=0.5d, before aging toward the
ferromagnetic state. In Fig. 8 we show a similar scenario, but
continuing to slightly longer times. At these long times, the
system ages with the ratiosnp/2nbd.c. The decrease ofnb

happens on the long time scale given bytnuc. However, the
plaquette concentrationnp is reacting on a much faster time
scale. The interpretation is thatnp has stabilized in an envi-
ronment set by the current value ofnb. It seems that the
stable value ofnp is around 2cnb.

If instead we quench to a temperature belowTx, there is
no apparent equilibration atnp.c. Instead, the effect of fi-
nite J becomes apparent whennp.e−2D/Tc.c. There is a
transient effect asnb begins to change, but the long time
behavior again has a constant ratiosnp/2nbd.0.8e−2D/Tc ssee
Fig. 9d. Simulations indicate that the constant value of
snp/2nbd seems to depend onTc as shown, and to vary only
weakly with T. Further, the exponent associated with the
aging appears to be similar to that in the paramagnetic state
saround 0.45d. The natural interpretation is that the aging of
these states is controlled in the same way as the aging of the
paramagnet: by the slow diffusion of excited plaquettes. The

FIG. 7. Plot showing aging of the paramagnet. We plotnp as a
function of time after a quench from infinite temperature toT
=0.286D, with J=0. The dashed line is a guide to the eye, corre-
sponding to a decay proportional tot−0.45.

FIG. 8. Aging of the system at a temperatureT=0.995Tc. We
have Tc=0.451D so that T.Tx. We plot np and np/2nb after a
quench from infinite temperature. Both quantities are equal until the
supercooled state becomes unstable. At these long times,np de-
creases, but the rationp/2nb remains constant with a value approxi-
mately equal toc=e−2D/T.

FIG. 9. Aging atT=0.364D, with Tc=0.444D, so thatT,Tx.
The rationp/2nb deviates fromnp at a value arounde−2D/Tc, so the
system does not reach the supercooled state withnp=c=e−2D/T.
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dynamics ofnb are now faster than those ofnp, and the
spatial ordering of the excited plaquettes is responding faster
than the plaquette density.

This description of the aging behavior is consistent with
the following conjectured rate equations:

e4D/T]tnp = lpnp
2.2s2cnb − npd, s20d

e4D/Te2D/Tc]tnb = lbnbf1 − sT/TcdgsXb − 2nbd, s21d

whereXb=mins1,npAe2D/Tcd. The significance of this quan-
tity is that nb would equilibrate toXb/2 if the concentration
of plaquettes were constrained to be equal tonp. The expo-
nent 2.2 in Eq.s20d is fixed by the exponent 0.45 for the
power law decay of the energy in the paramagnetic phasesas
shown in Fig. 7d. The overall scaling of time with tempera-
ture in that equation is also fixed by the aging of the para-
magnetic states. The scaling of time in Eq.s21d is determined
by the scaling of the nucleation time in Eq.s18d.

The adjustable parameters of the theory are therefore the
rateslp andlb, and the constantA. The two rates are micro-
scopic frequencies reflecting the cooperative motion of the
spins required to changenp or nb. The constantA determines
the ratio of nb and np when the aging is controlled by
plaquette diffusionsas in Fig. 9d. The instability of the su-
percooled state means thatAe2D/Tc,e2D/T: the data of Fig. 9
are consistent withs1/Ad.0.8, as mentioned above.

We make no attempt to justify these rate equations on
microscopic grounds. For example, the exponent 2.2 in Eq.
s20d is a nontrivial decay exponent for an annihilation-
diffusion problem in which diffusion of single excited
plaquettes is suppressed by the kinetic constraint. We imag-
ine “integrating out” all the microscopic degrees of freedom:
the effect of the complicated fluctuation effects appears only
in this exponent. However, while their microscopic origin is
unclear, the interesting features of these equations ares1d the
different temperature scaling of the times associated with the
two degrees of freedom, ands2d the presence of points at
which one degree of freedom is not changing. The first fea-
ture leads to a separation of time scales in the problem.
When this is combined with the second feature, the apparent
metastability of the supercooled states becomes possible. In
this case, the faster degree of freedom isnp, which equili-
brates at 2cnb on a time scale that is fast enough thatnb can
be considered to be constant. The aging of the supercooled
state then has a time scale determined by the rate equation
for nb. That degree of freedom is trying to reach apparent
equilibration atnpAe2D/Tc/2, but np is the faster degree of
freedom, and is moving the target downward just as fast as
nb decreases toward it. This results in the aging at constant
nb/np that is shown in Fig. 8. An exactly analogous process
is taking place in Fig. 9, except thatnp is now the slow
degree of freedom.

The central point of the above argument is that the slow
degrees of freedom set a “target value” for the fast ones, at
which the fast degrees of freedom appear to equilibrate when
viewed on the fast time scale. This is the sense in which the
states discussed in the previous section are “supercooled.”
Their lifetime is then set by the slow degrees of freedom, and
this lifetime is much longer than relaxation time scales in

these states. To understand the correlations in the aging state,
it would be desirable to study the thermodynamics of the
excited plaquettes while working at fixednb. However, this is
well beyond the scope of this paper.

Note that there is no provision in Eqs.s20d and s21d for
equilibration in a ferromagnetic state. However, the large in-
ternal energy difference between paramagnetic and ferro-
magnetic states means that this equilibration is not observed
on time scales that are accessible in simulation. Therefore,
Eqs.s20d ands21d appear to be valid over time scales that are
several orders of magnitude longer than the lifetimes of the
supercooled states.

It is simple to verify that the qualitative behavior of Figs.
4 and 7–9 may be fitted by Eqs.s20d and s21d, with appro-
priate values ofslp,lb,Ad. See Fig. 10, in which we show
reasonable agreement. Note, however, that the onset of
nucleation from the supercooled state is more sudden than
that predicted by the mean field equations. The initial order-
ing is slower than the power law predicted by these simple
rate equations.

The requirement of different parameters to fit the different
simulations in Fig. 10 show the rather simplistic assumptions
for the temperature scaling in the mean field equations. That
is, the linear suppression of the nucleation rate withsTc−Td
is valid only nearTc, necessitating adjustment oflb at
smaller temperatures. We have already commented thatA
will be temperature dependent, but that this dependence has
a weaker effect onXb than the exponential dependence of
that quantity onTc.

The fits of Fig. 10 using these mean field equations sup-
port our interpretation of Fig. 6 in terms of purely dynamical
effects that do not depend on thermodynamic quantities like
free energy barriers and spinodal points.

IV. DISCUSSION AND CONCLUSIONS

We have shown that the SEV model can be interpreted in
terms of a high temperature state in which excitations are

FIG. 10. Fit to the data of Figs. 8s1 symbolsd and 9s3 sym-
bolsd using mean field rate equationss20d and s21d. Note that the
left and right panels each show data from two runs, showing how
the different regimes are captured by the same rate equations. Pa-
rameters areslp,lb,Ad=s350,17,0.85d for the data of Fig. 8, and
slp,lb,Ad=s350,17,1.20d for those of Fig. 9.
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free and pointlike, and a low temperature phase in which
these free excitations are confined into composite objects,
with a characteristic size that is smaller than their spacing.
The dynamics of the paramagnet are well described in a mo-
bility field picture similar to the FA model.

Near the transition to the ordered phase, supercooled
paramagnetic states have long lifetimes. Two-time correla-
tion functions show stationarity in these states, and both their
dynamics and their thermodynamics are well described by
the plaquette model. However, these states have finite life-
times, beyond which stationarity is lost and it becomes clear
that they are unstable to the ferromagnetic state. This situa-
tion resembles the situation in physical glass formers, except
that the presence of a first order transition in those systems
means that the lifetimes of the supercooled states diverge
much faster nearTc than in the SEV model.

We have also shown that the mean field rate equations
s20d ands21d are a suitable framework for describing the out
of equilibrium sagingd behavior of the SEV model.

We end this work with some comments about the signifi-
cance of these results in the context of the literature. Com-
paring with the work of Cavagnaet al. f12g, we note the
similarity between the phenomenology of their model and
the SEV model. However, the exact solution of the eight-
vertex model, and the understanding of the dynamics of the
paramagnetic state that arises from previous work on the
plaquette model allow us to investigate the behavior from a
more microscopic viewpoint.

We illustrate this with three points. First, the internal en-
ergy of the SEV model changes very rapidly aroundTc.
From simulation evidence alone, we mightserroneouslyd
conclude that the transition was first order. However, we
know from theoretical considerations that the transition is
second order. This knowledge is important when discussing
the possible metastability of supercooled states. Second, the
power law suppression of nucleation nearTc in the SEV
model results from the fact that our transition is second or-
der. For a first order transition we would expect an exponen-
tial suppression. The nature of this suppression in Ref.f12g
does not seem to be clear. And finally, we are able to identify
the minimum in Fig. 6 as arising not from the crossing of a
spinodal, but rather from a crossover in time scales.

We would also like to point out some similarities between
the paramagnetic phase of the SEV model and the models
which are conjectured to be controlled by the behavior of
entropic dropletsf7,25g. As mentioned above, the invariance
of the Hamiltonian atJ=0 under flipping a whole row or
column of spins leads to a largesbut nonextensived ground
state entropy. We have shown that the introduction ofJ is
largely irrelevant aboveTc and in the supercooled states.
Therefore, we may interpret the low temperature paramag-
netic statessTc,T!Tod as a mosaic of the manyJ=0
ground states. The “droplets” are referred to as “entropic” in
this scenario. This name arises because there does not seem
to be an energetic argument for their stability, so it is as-
sumed that they are stabilized by some entropic mechanism.
In the plaquette model, the borders between droplets of each
ground state are not one dimensional as one might expect,
but rather arise from pointlike excited plaquettes. This situ-
ation was alluded to in the recent paper of Bouchaud and

Biroli f25g. Since there is no perimeter for a surface tension
to couple to, the entropic forces are strong enough to stabi-
lize the mosaic state. This is the situation in the SEV model
at finite J, but T.Tc.

If we accept the plaquette model as a realization of the
entropic droplet picture, it is interesting to note that the only
fixed point in that model is at zero temperature. That is,
although the entropy falls rapidly as the temperature is re-
duced throughTo, any extrapolation that leads toS=0 at a
finite temperature is not valid. Rather, the entropy remains
regular at all temperaturesseven those in which the glassy
phase is completely unstable to the crystald. In fact, Sglass
.Scrystalall the way down toT=0 swhereSglassis the entropy
associated with the plaquette model andScrystal is the entropy
of the SEV model with the same value ofD and at the same
temperatured. In this scenario the Kauzmann paradoxf22g is
seen as arising from an unphysical linear extrapolation of the
glassy entropy.

To conclude, we have shown that the plaquette model
limit of the SEV model describes its behavior in both stable
and supercooled paramagnetic states. This model resembles
both the mobility field description of glassy systemssas ex-
emplified by the FA modeld and the entropic droplet picture.
However, there is no finite temperature fixed point in the
theory of the glassy states; thus Kauzmann’s paradox is
avoided. Taken together, these results are further evidence
that theories without thermodynamic singularities at finite
temperature are suitable for describing glassy statesf1–3g.
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APPENDIX: LOW AND HIGH TEMPERATURE
EXPANSIONS OF THE EIGHT-VERTEX MODEL

In this appendix, we consider the series for the free energy
given by Baxterf19g:

sf/Td = − ln c8 − o
m

xmfsq/x2dm − 1g2s1 − xmd2

ms1 − q2mds1 + xm/2d
sA1d

whereq, x2, andc8 depend on the model parametersD /T and
J/T. The parameterz in Baxter’s calculation is 1 in the SEV
model since the Hamiltonian is invariant under 90° rotations.
The dependence ofq andx2 on the original parameterssD ,Jd
is rather indirect: the main task of this appendix will be to
derive simple relations betweensq,x2d andsD /T,J/Td in the
ferromagnetic phase.

However, we first consider the contribution of the lnc8
term to the free energy. In the paramagnetic phase we have

sfPM/Td , ln c8 = lnfeD/T cosh2J/T + e−D/Tg sA2d

which is the result quoted as Eq.s5d, and may be used to
calculate properties of the paramagnetic phase. However, in
the ferromagnetic phase we havec8=esD+2Jd/T, so taking only
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the leading term leads to the trivial resultnp=nb=0. There
are no excitations in the ferromagnetic phase at this order.
We must therefore estimate the parametersx and q in this
phase.

The prescription for calculating these parameters is given
by Baxterf19g, but we give a brief review. The ratiosD /T
andJ/T are used to calculate four parameterssa,b,c,dd. The
partition function is symmetric under interchange of the four
quantitiessa±b,c±dd. We may therefore map the parameters
into the principal regime, to givesa8 ,b8 ,c8 ,d8d satisfying
c8+d8.c8−d8ùa8+b8.a8−b8ù0. These parameters are
used to calculate D=f−sc82+d82d+sa82+b82dg / s2c8d8
+2a8b8d andg=sc8d8 /a8b8d.

In the ferromagnetic phase we haveg=exps4D /Td. We
work atTc,D sog is a very large number, and we arrive at

D = coshs4J/TdF1 − g−1S1 +
1

coshs4J/TdD + Osg−2dG .

sA3d

The next step is to calculate the parameterk, from

gs1 + k2d = D2s1 + gd2 − s1 + g2d sA4d

and the result is

k =
e−4D/T

2 sinh2s2J/Tdf1 + coshs2J/Tdg
+ Osg−2d. sA5d

We have 0,k,1, andk is the elliptic modulus with nomeq.
That is,

− ln qE
0

1 dt
Î1 − t2Î1 − k2t2

= pE
0

` dt
Î1 + t2Îk2 + t2

.

sA6d

For the series ofsA1d to converge quickly, we requireq
,1: in that case Eq.sA6d reduces toq.sk2/16d, and there-
fore we have the approximate relation

q .
e−8D/T

128 sinh4s2J/Td
, sA7d

whose condition for validity is thatk be small, which re-
quires that sinhs2J/Td!e−2D/T. This is the condition that we
are well inside the ferromagnetic phase, as is clear from Eq.
s2d.

In order to evaluate the terms insA1d, we also require an
approximate form forx. The definition ofx is

lnS q

x2DE
0

1 dt
Î1 − t2Î1 − k2t2

=E
Îgk

` p dt
Î1 + t2Îk2 + t2

,

sA8d

from which the relationx2,q is clear. This integral may be
expanded in a series arounds1/Îgkd=0. Equation sA5d
shows that this parameter is small ifJ!T. The result is that

sq/x2d − 1 . 4 sinhs2J/Td. sA9d

Substituting intosA1d, and ignoring all terms withmù2, we
arrive at

fFM . − sD/Td − sJ/Td −
e−8D/T

16 sinh2s2J/Td
sA10d

which gives the results11d, qualified by the validity condi-
tion

e−2D/T ! sinhs2J/Td ! 1, sA11d

from which we note that this is not an expansion aboutT
=0, but rather a useful approximation to the free energy in
this part of the parameter space.
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